Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Br J Pharmacol ; 180 Suppl 2: S374-S469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123156

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Ligantes , Canais Iônicos/química , Receptores Acoplados a Proteínas G , Receptores Citoplasmáticos e Nucleares
2.
Proc Natl Acad Sci U S A ; 120(43): e2308448120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844224

RESUMO

Organisms across the tree of life colonize novel environments by partnering with bacterial symbionts. These symbioses are characterized by intimate integration of host/endosymbiont biology at multiple levels, including metabolically. Metabolic integration is particularly important for sap-feeding insects and their symbionts, which supplement nutritionally unbalanced host diets. Many studies reveal parallel evolution of host/endosymbiont metabolic complementarity in amino acid biosynthesis, raising questions about how amino acid metabolism is regulated, how regulatory mechanisms evolve, and the extent to which similar mechanisms evolve in different systems. In the aphid/Buchnera symbiosis, the transporter ApGLNT1 (Acyrthosiphon pisum glutamine transporter 1) supplies glutamine, an amino donor in transamination reactions, to bacteriocytes (where Buchnera reside) and is competitively inhibited by Buchnera-supplied arginine-consistent with a role regulating amino acid metabolism given host demand for Buchnera-produced amino acids. We examined how ApGLNT1 evolved a regulatory role by functionally characterizing orthologs in insects with and without endosymbionts. ApGLNT1 orthologs are functionally similar, and orthology searches coupled with homology modeling revealed that GLNT1 is ancient and structurally conserved across insects. Our results indicate that the ApGLNT1 symbiotic regulatory role is derived from its ancestral role and, in aphids, is likely facilitated by loss of arginine biosynthesis through the urea cycle. Given consistent loss of host arginine biosynthesis and retention of endosymbiont arginine supply, we hypothesize that GLNT1 is a general mechanism regulating amino acid metabolism in sap-feeding insects. This work fills a gap, highlighting the broad importance of co-option of ancestral proteins to novel contexts in the evolution of host/symbiont systems.


Assuntos
Afídeos , Buchnera , Animais , Glutamina/metabolismo , Afídeos/microbiologia , Buchnera/genética , Buchnera/metabolismo , Aminoácidos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arginina/metabolismo , Simbiose/fisiologia
3.
Biomolecules ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36291613

RESUMO

SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.


Assuntos
Aminoácidos , Pró-Fármacos , Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Óxido Nítrico Sintase/metabolismo , Neurotransmissores
4.
Br J Pharmacol ; 178 Suppl 1: S412-S513, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529826

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15543. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G
5.
SLAS Discov ; 24(9): 928-938, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31373846

RESUMO

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure-function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Aminoácidos/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estadiamento de Neoplasias/métodos , Conformação Proteica em alfa-Hélice/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(32): 16003-16011, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337682

RESUMO

Plant sap-feeding insects are widespread, having evolved to occupy diverse environmental niches despite exclusive feeding on an impoverished diet lacking in essential amino acids and vitamins. Success depends exquisitely on their symbiotic relationships with microbial symbionts housed within specialized eukaryotic bacteriocyte cells. Each bacteriocyte is packed with symbionts that are individually surrounded by a host-derived symbiosomal membrane representing the absolute host-symbiont interface. The symbiosomal membrane must be a dynamic and selectively permeable structure to enable bidirectional and differential movement of essential nutrients, metabolites, and biosynthetic intermediates, vital for growth and survival of host and symbiont. However, despite this crucial role, the molecular basis of membrane transport across the symbiosomal membrane remains unresolved in all bacteriocyte-containing insects. A transport protein was immunolocalized to the symbiosomal membrane separating the pea aphid Acyrthosiphon pisum from its intracellular symbiont Buchnera aphidicola The transporter, A. pisum nonessential amino acid transporter 1, or ApNEAAT1 (gene: ACYPI008971), was characterized functionally following heterologous expression in Xenopus oocytes, and mediates both inward and outward transport of small dipolar amino acids (serine, proline, cysteine, alanine, glycine). Electroneutral ApNEAAT1 transport is driven by amino acid concentration gradients and is not coupled to transmembrane ion gradients. Previous metabolite profiling of hemolymph and bacteriocyte, alongside metabolic pathway analysis in host and symbiont, enable prediction of a physiological role for ApNEAAT1 in bidirectional host-symbiont amino acid transfer, supplying both host and symbiont with indispensable nutrients and biosynthetic precursors to facilitate metabolic complementarity.


Assuntos
Aminoácidos/metabolismo , Afídeos/metabolismo , Buchnera/metabolismo , Simbiose , Sequência de Aminoácidos , Animais , Proteínas de Insetos/metabolismo , Modelos Biológicos , Filogenia
7.
Elife ; 82019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31355745

RESUMO

Plasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites. The universal retention among otherwise highly reduced genomes indicates an important role for these transporters for intracellular parasites. Using Trachipleistophora hominis, a Microsporidia isolated from an HIV/AIDS patient, as our experimental model, we show that the proteins are ATP and GTP transporters located on the surface of parasites during their intracellular growth and replication. Our work identifies a new route for the acquisition of essential energy and nucleotides for a major group of intracellular parasites that infect most animal species including humans.


Assuntos
Trifosfato de Adenosina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microsporídios/genética , Microsporídios/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Sequência Conservada , Genoma Fúngico , Microsporídios/crescimento & desenvolvimento , Coelhos
8.
Cell Mol Life Sci ; 75(5): 921-938, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29058016

RESUMO

Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Transporte Biológico , Domínio Catalítico/genética , Humanos , Modelos Moleculares , Família Multigênica , Mutagênese Sítio-Dirigida , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Especificidade por Substrato/genética
9.
Clin J Am Soc Nephrol ; 10(7): 1235-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25964309

RESUMO

BACKGROUND AND OBJECTIVES: Cystinuria is a rare inherited renal stone disease. Mutations in the amino acid exchanger System b(0,+), the two subunits of which are encoded by SLC3A1 and SLC7A9, predominantly underlie this disease. The work analyzed the epidemiology of cystinuria and the influence of mutations in these two genes on disease severity in a United Kingdom cohort. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Prevalent patients were studied from 2012 to 2014 in the northeast and southwest of the United Kingdom. Clinical phenotypes were defined, and genetic analysis of SLC3A1 and SLC7A9 combining Sanger sequencing and multiplex ligation probe-dependent amplification was performed. RESULTS: In total, 76 patients (42 men and 34 women) were studied. All subjects had proven cystine stones. Median age of presentation (first stone episode) was 24 years old, but 21% of patients presented after 40 years old. Patients had varied clinical courses, with 37% of patients having ≥10 stone episodes; 70% had evidence of CKD, and 9% had reached ESRD as a result of cystinuria and its complications. Patients with cystinuria received a variety of different therapies, with no obvious treatment consensus. Notably, 20% of patients had staghorn calculi, with associated impaired renal function in 80% of these patients. Genetic analysis revealed that biallelic mutations were present in either SLC3A1 (n=27) or SLC7A9 (n=20); 22 patients had only one mutated allele detected (SLC3A1 in five patients and SLC7A9 in 17 patients). In total, 37 different mutant variant alleles were identified, including 12 novel mutations; 22% of mutations were caused by large gene rearrangements. No genotype-phenotype association was detected in this cohort. CONCLUSIONS: Patients with cystinuria in the United Kingdom often present atypically with staghorn calculi at ≥40 years old and commonly develop significant renal impairment. There is no association of clinical course with genotype. Treatments directed toward reducing stone burden need to be rationalized and developed to optimize patient care.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinúria/genética , Mutação , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Cistinúria/diagnóstico , Cistinúria/epidemiologia , Cistinúria/terapia , Análise Mutacional de DNA/métodos , Progressão da Doença , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Cálculos Renais/diagnóstico , Cálculos Renais/epidemiologia , Cálculos Renais/genética , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Prevalência , Sistema de Registros , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Estudos Retrospectivos , Índice de Gravidade de Doença , Reino Unido/epidemiologia , Adulto Jovem
10.
Clin Kidney J ; 8(1): 113-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25713721

RESUMO

End-stage renal disease (ESRD) presenting in a familial autosomal dominant pattern points to an underlying monogenic cause. Nail-patella syndrome (NPS) is an autosomal dominant disorder that may lead to ESRD caused by mutations in the transcription factor LMX1B. Renal-limited forms of this disease, termed nail-patella-like renal disease (NPLRD), and LMX1B nephropathy have recently been described. We report a large family, from the North East of England, with seven affected members with varying phenotypes of renal disease, ranging from ESRD at 28 years of age to microscopic haematuria and proteinuria and relatively preserved renal function. In this family, there were no extra-renal manifestations to suggest NPS. Genome-wide linkage studies and inheritance by descent (IBD) suggested disease loci on Chromosome 1 and 9. Whole exome sequencing (WES) analysis identified a novel sequence variant (p.R249Q) in the LMX1B gene in each of the three samples submitted, which was confirmed using Sanger sequencing. The variant segregated with the disease in all affected individuals. In silico modelling revealed that R249 is putatively located in close proximity to the DNA phosphoskeleton, supporting a role for this residue in the interaction between the LMX1B homeodomain and its target DNA. WES and analysis of potential target genes, including CD2AP, NPHS2, COL4A3, COL4A4 and COL4A5, did not reveal any co-inherited pathogenic variants. In conclusion, we confirm a novel LMX1B mutation in a large family with an autosomal dominant pattern of nephropathy. This report confirms that LMX1B mutations may cause a glomerulopathy without extra-renal manifestations. A molecular genetic diagnosis of LMX1B nephropathy thus provides a definitive diagnosis, prevents the need for renal biopsies and allows at risk family members to be screened.

11.
J Am Soc Nephrol ; 26(3): 543-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25296721

RESUMO

Nephrolithiasis is a prevalent condition with a high morbidity. Although dozens of monogenic causes have been identified, the fraction of single-gene disease has not been well studied. To determine the percentage of cases that can be molecularly explained by mutations in 1 of 30 known kidney stone genes, we conducted a high-throughput mutation analysis in a cohort of consecutively recruited patients from typical kidney stone clinics. The cohort comprised 272 genetically unresolved individuals (106 children and 166 adults) from 268 families with nephrolithiasis (n=256) or isolated nephrocalcinosis (n=16). We detected 50 likely causative mutations in 14 of 30 analyzed genes, leading to a molecular diagnosis in 14.9% (40 of 268) of all cases; 20 of 50 detected mutations were novel (40%). The cystinuria gene SLC7A9 (n=19) was most frequently mutated. The percentage of monogenic cases was notably high in both the adult (11.4%) and pediatric cohorts (20.8%). Recessive causes were more frequent among children, whereas dominant disease occurred more abundantly in adults. Our study provides an in-depth analysis of monogenic causes of kidney stone disease. We suggest that knowledge of the molecular cause of nephrolithiasis and nephrocalcinosis may have practical implications and might facilitate personalized treatment.


Assuntos
Nefrocalcinose/genética , Nefrolitíase/genética , Adulto , Criança , Estudos de Coortes , Análise Mutacional de DNA , Humanos , Mutação de Sentido Incorreto
15.
Br J Pharmacol ; 164(7): 1802-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21501141

RESUMO

Members of the solute carrier (SLC) 36 family are involved in transmembrane movement of amino acids and derivatives. SLC36 consists of four members. SLC36A1 and SLC36A2 both function as H(+) -coupled amino acid symporters. SLC36A1 is expressed at the luminal surface of the small intestine but is also commonly found in lysosomes in many cell types (including neurones), suggesting that it is a multipurpose carrier with distinct roles in different cells including absorption in the small intestine and as an efflux pathway following intralysosomal protein breakdown. SLC36A1 has a relatively low affinity (K(m) 1-10 mM) for its substrates, which include zwitterionic amino and imino acids, heterocyclic amino acids and amino acid-based drugs and derivatives used experimentally and/or clinically to treat epilepsy, schizophrenia, bacterial infections, hyperglycaemia and cancer. SLC36A2 is expressed at the apical surface of the human renal proximal tubule where it functions in the reabsorption of glycine, proline and hydroxyproline. SLC36A2 also transports amino acid derivatives but has a narrower substrate selectivity and higher affinity (K(m) 0.1-0.7 mM) than SLC36A1. Mutations in SLC36A2 lead to hyperglycinuria and iminoglycinuria. SLC36A3 is expressed only in testes and is an orphan transporter with no known function. SLC36A4 is widely distributed at the mRNA level and is a high-affinity (K(m) 2-3 µM) transporter for proline and tryptophan. We have much to learn about this family of transporters, but from current knowledge, it seems likely that their function will influence the pharmacokinetic profiles of amino acid-based drugs by mediating transport in both the small intestine and kidney.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Transporte Biológico , Humanos , Intestino Delgado/metabolismo , Rim/metabolismo , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual
16.
Biochim Biophys Acta ; 1808(1): 260-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20691150

RESUMO

The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Simportadores/química , Aminoácidos/metabolismo , Animais , Transporte Biológico , Relação Dose-Resposta a Droga , Eletrofisiologia/métodos , Concentração Inibidora 50 , Modelos Químicos , Oócitos/metabolismo , Fenótipo , Prolina/química , Ratos , Triptofano/química , Xenopus laevis/metabolismo , Ácido gama-Aminobutírico/análogos & derivados
17.
Physiology (Bethesda) ; 25(6): 364-77, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21186281

RESUMO

The physiological role of mammalian solute carrier (SLC) proteins is to mediate transmembrane movement of electrolytes, nutrients, micronutrients, vitamins, and endogenous metabolites from one cellular compartment to another. Many transporters in the small intestine, kidney, and solid tumors are H(+)-coupled, driven by local H(+)-electrochemical gradients, and transport numerous drugs. These transporters include PepT1 and PepT2 (SLC15A1/2), PCFT (SLC46A1), PAT1 (SLC36A1), OAT10 (SLC22A13), OATP2B1 (SLCO2B1), MCT1 (SLC16A1), and MATE1 and MATE2-K (SLC47A1/2).


Assuntos
Antiporters/metabolismo , Preparações Farmacêuticas/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Humanos , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Túbulos Renais Proximais/metabolismo , Neoplasias/metabolismo , Prótons
18.
J Pharmacol Exp Ther ; 332(1): 220-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19789362

RESUMO

5-Aminolevulinic acid (ALA) is a prodrug used in photodynamic therapy, fluorescent diagnosis, and fluorescent-guided resection because it leads to accumulation of the photosensitizer protoporphyrin IX (PpIX) in tumor tissues. ALA has good oral bioavailability, but high oral doses are required to obtain selective PpIX accumulation in colonic tumors because accumulation is also observed in normal gut mucosa. Structural similarities between ALA and GABA led us to test the hypothesis that the H(+)-coupled amino acid transporter PAT1 (SLC36A1) will contribute to luminal ALA uptake. Radiolabel uptake and electrophysiological measurements identified PAT1-mediated H(+)-coupled ALA symport after heterologous expression in Xenopus oocytes. The selectivity of the nontransported inhibitors 5-hydroxytryptophan and 4-aminomethylbenzoic acid for, respectively, PAT1 and the H(+)-coupled di/tripeptide transporter PepT1 (SLC15A1) were examined. 5-Hydroxytryptophan selectively inhibited PAT1-mediated amino acid uptake across the brush-border membrane of the human intestinal (Caco-2) epithelium whereas 4-aminomethylbenzoic acid selectively inhibited PepT1-mediated dipeptide uptake. The inhibitory effects of 5-hydroxytryptophan and 4-aminomethylbenzoic acid were additive, demonstrating that both PAT1 and PepT1 contribute to intestinal transport of ALA. This is the first demonstration of overlap in substrate specificity between these distinct transporters for amino acids and dipeptides. PAT1 and PepT1 expression was monitored by reverse transcriptase-polymerase chain reaction using paired samples of normal and cancer tissue from human colon. mRNA for both transporters was detected. PepT1 mRNA was increased 2.3-fold in cancer tissues. Thus, increased PepT1 expression in colonic cancer could contribute to the increased PpIX accumulation observed. Selective inhibition of PAT1 could enhance PpIX loading in tumor tissue relative to that in normal tissue.


Assuntos
Sistemas de Transporte de Aminoácidos/biossíntese , Ácido Aminolevulínico/farmacocinética , Intestino Delgado/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Pró-Fármacos/farmacocinética , Simportadores/biossíntese , Animais , Transporte Biológico , Células CACO-2 , Humanos , Mucosa Intestinal/metabolismo , Oócitos , Transportador 1 de Peptídeos , RNA Mensageiro/metabolismo , Xenopus laevis
19.
J Physiol ; 587(Pt 4): 731-44, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19074966

RESUMO

Taurine is an essential amino acid in some mammals and is conditionally essential in humans. Taurine is an abundant component of meat and fish-based foods and has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. The purpose of this investigation was to identity the relative contributions of the solute transporters involved in taurine uptake across the luminal membrane of human enterocytes. Distinct transport characteristics were revealed following expression of the candidate solute transporters in Xenopus laevis oocytes: PAT1 (SLC36A1) is a H(+)-coupled, pH-dependent, Na(+)- and Cl(-)-independent, low-affinity, high-capacity transporter for taurine and beta-alanine; TauT (SLC6A6) is a Na(+)- and Cl(-)-dependent, high-affinity, low-capacity transporter of taurine and beta-alanine; ATB(0,+) (SLC6A14) is a Na(+)- and Cl(-)-dependent, high-affinity, low-capacity transporter which accepts beta-alanine but not taurine. Taurine uptake across the brush-border membrane of human intestinal Caco-2 cell monolayers showed characteristics of both PAT1- and TauT-mediated transport. Under physiological conditions, Cl(-)-dependent TauT-mediated uptake predominates at low taurine concentrations, whereas at higher concentrations typical of diet, Cl(-)-independent PAT1-mediated uptake is the major absorptive mechanism. Real-time PCR analysis of human duodenal and ileal biopsy samples demonstrates that PAT1, TauT and ATB(0,+) mRNA are expressed in each tissue but to varying degrees. In conclusion, this study is the first to demonstrate both taurine uptake via PAT1 and functional coexpression of PAT1 and TauT at the apical membrane of the human intestinal epithelium. PAT1 may be responsible for bulk taurine uptake during a meal whereas TauT may be important for taurine supply to the intestinal epithelium and for taurine capture between meals.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Hidrogênio/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simportadores/metabolismo , Taurina/metabolismo , Sistemas de Transporte de Aminoácidos/ultraestrutura , Animais , Células CACO-2 , Feminino , Humanos , Mucosa Intestinal/ultraestrutura , Intestino Delgado/ultraestrutura , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Xenopus laevis
20.
J Physiol ; 586(17): 4061-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599538

RESUMO

The beta-alanine carrier was characterized functionally in the 1960s to 1980s at the luminal surface of the ileal mucosal wall and is a Na(+)- and Cl(-)-dependent transporter of a number of essential and non-essential cationic and dipolar amino acids including lysine, arginine and leucine. beta-Alanine carrier-like function has not been demonstrated by any solute carrier transport system identified at the molecular level. A series of experiments were designed to determine whether solute carrier SLC6A14 is the molecular correlate of the intestinal beta-alanine carrier, perhaps the last of the classical intestinal amino acid transport systems to be identified at the molecular level. Following expression of the human SLC6A14 transporter in Xenopus laevis oocytes, the key functional characteristics of the beta-alanine carrier, identified previously in situ in ileum, were demonstrated for the first time. The transport system is both Na(+) and Cl(-) dependent, can transport non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine. N-methylation of its substrates reduces the affinity for transport. These observations confirm the hypothesis that the SLC6A14 gene encodes the transport protein known as the beta-alanine carrier which, due to its broad substrate specificity, is likely to play an important role in absorption of essential nutrients and drugs in the distal regions of the human gastrointestinal tract.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , beta-Alanina/metabolismo , Sistemas de Transporte de Aminoácidos , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Oócitos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...